Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Distinctions in heterotrophic and autotrophic-based metabolism as recorded in the hydrogen and carbon isotope ratios of normal alkanes.

Identifieur interne : 000F55 ( Main/Exploration ); précédent : 000F54; suivant : 000F56

Distinctions in heterotrophic and autotrophic-based metabolism as recorded in the hydrogen and carbon isotope ratios of normal alkanes.

Auteurs : Brett J. Tipple [États-Unis] ; James R. Ehleringer [États-Unis]

Source :

RBID : pubmed:29955986

Descripteurs français

English descriptors

Abstract

The hydrogen isotope values of n-alkanes (δ2Hn-alkane) reflect a plant's water source and water relations, while the carbon isotope values (δ13Cn-alkane) relate to a plant's carbon metabolism and response to environmental conditions. However, the isotopic dynamics of the transition from heterotrophic to autotrophic metabolism during foliar development on δ2Hn-alkane and δ13Cn-alkane remain unclear. Here, we monitored δ2Hn-alkane and δ13Cn-alkane across a growing season from Betula occidentalis, Populus angustifolia, and Acer negundo. In addition, we compiled δ2H values of atmospheric vapor, leaf water, xylem water, and stream water as well as δ13C values of bulk leaf tissue (δ13Cbulk). We found δ2Hn-alkane and δ13Cn-alkane varied with leaf development and indicated that the majority of wax development occurred during the initial growing season. The patterns in δ2Hn-alkane were broadly consistent between species and with previous studies; however, each species had a unique final δ2Hn-alkane value. The δ13Cbulk for all species demonstrated a characteristic 13C-enrichment during the initial growing season, followed by 13C-depletion, while δ13Cn-alkane did not exhibit a consistent trend between the species. These δ13C data suggested a decoupling of the isotopic inputs between n-alkanes and photosynthetic leaf tissue. When coupled with δ2Hn-alkane, these data suggested that the precursor compounds utilized in initial production of n-alkanes might be variable and possibly indicated that the stored precursors used for initial leaf tissue and wax production originated from different sources. Nonetheless, these data indicated that the isotopic signatures of n-alkanes relate to a mixture of precursors, but only during a distinct period of leaf ontogeny.

DOI: 10.1007/s00442-018-4189-0
PubMed: 29955986


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Distinctions in heterotrophic and autotrophic-based metabolism as recorded in the hydrogen and carbon isotope ratios of normal alkanes.</title>
<author>
<name sortKey="Tipple, Brett J" sort="Tipple, Brett J" uniqKey="Tipple B" first="Brett J" last="Tipple">Brett J. Tipple</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT, 84112, USA. brett.tipple@utah.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT, 84112</wicri:regionArea>
<wicri:noRegion>84112</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Global Change and Sustainability Center, University of Utah, 115 South 1460 East, Salt Lake City, UT, 84112, USA. brett.tipple@utah.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Global Change and Sustainability Center, University of Utah, 115 South 1460 East, Salt Lake City, UT, 84112</wicri:regionArea>
<wicri:noRegion>84112</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ehleringer, James R" sort="Ehleringer, James R" uniqKey="Ehleringer J" first="James R" last="Ehleringer">James R. Ehleringer</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT, 84112, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT, 84112</wicri:regionArea>
<wicri:noRegion>84112</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Global Change and Sustainability Center, University of Utah, 115 South 1460 East, Salt Lake City, UT, 84112, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Global Change and Sustainability Center, University of Utah, 115 South 1460 East, Salt Lake City, UT, 84112</wicri:regionArea>
<wicri:noRegion>84112</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:29955986</idno>
<idno type="pmid">29955986</idno>
<idno type="doi">10.1007/s00442-018-4189-0</idno>
<idno type="wicri:Area/Main/Corpus">000D65</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000D65</idno>
<idno type="wicri:Area/Main/Curation">000D65</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000D65</idno>
<idno type="wicri:Area/Main/Exploration">000D65</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Distinctions in heterotrophic and autotrophic-based metabolism as recorded in the hydrogen and carbon isotope ratios of normal alkanes.</title>
<author>
<name sortKey="Tipple, Brett J" sort="Tipple, Brett J" uniqKey="Tipple B" first="Brett J" last="Tipple">Brett J. Tipple</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT, 84112, USA. brett.tipple@utah.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT, 84112</wicri:regionArea>
<wicri:noRegion>84112</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Global Change and Sustainability Center, University of Utah, 115 South 1460 East, Salt Lake City, UT, 84112, USA. brett.tipple@utah.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Global Change and Sustainability Center, University of Utah, 115 South 1460 East, Salt Lake City, UT, 84112</wicri:regionArea>
<wicri:noRegion>84112</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ehleringer, James R" sort="Ehleringer, James R" uniqKey="Ehleringer J" first="James R" last="Ehleringer">James R. Ehleringer</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT, 84112, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT, 84112</wicri:regionArea>
<wicri:noRegion>84112</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Global Change and Sustainability Center, University of Utah, 115 South 1460 East, Salt Lake City, UT, 84112, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Global Change and Sustainability Center, University of Utah, 115 South 1460 East, Salt Lake City, UT, 84112</wicri:regionArea>
<wicri:noRegion>84112</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Oecologia</title>
<idno type="eISSN">1432-1939</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Alkanes (MeSH)</term>
<term>Carbon Isotopes (MeSH)</term>
<term>Deuterium (MeSH)</term>
<term>Hydrogen (MeSH)</term>
<term>Plant Leaves (MeSH)</term>
<term>Waxes (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Alcanes (MeSH)</term>
<term>Cires (MeSH)</term>
<term>Deutérium (MeSH)</term>
<term>Feuilles de plante (MeSH)</term>
<term>Hydrogène (MeSH)</term>
<term>Isotopes du carbone (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Alkanes</term>
<term>Carbon Isotopes</term>
<term>Deuterium</term>
<term>Hydrogen</term>
<term>Waxes</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Plant Leaves</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Alcanes</term>
<term>Cires</term>
<term>Deutérium</term>
<term>Feuilles de plante</term>
<term>Hydrogène</term>
<term>Isotopes du carbone</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The hydrogen isotope values of n-alkanes (δ
<sup>2</sup>
H
<sub>n-alkane</sub>
) reflect a plant's water source and water relations, while the carbon isotope values (δ
<sup>13</sup>
C
<sub>n-alkane</sub>
) relate to a plant's carbon metabolism and response to environmental conditions. However, the isotopic dynamics of the transition from heterotrophic to autotrophic metabolism during foliar development on δ
<sup>2</sup>
H
<sub>n-alkane</sub>
and δ
<sup>13</sup>
C
<sub>n-alkane</sub>
remain unclear. Here, we monitored δ
<sup>2</sup>
H
<sub>n-alkane</sub>
and δ
<sup>13</sup>
C
<sub>n-alkane</sub>
across a growing season from Betula occidentalis, Populus angustifolia, and Acer negundo. In addition, we compiled δ
<sup>2</sup>
H values of atmospheric vapor, leaf water, xylem water, and stream water as well as δ
<sup>13</sup>
C values of bulk leaf tissue (δ
<sup>13</sup>
C
<sub>bulk</sub>
). We found δ
<sup>2</sup>
H
<sub>n-alkane</sub>
and δ
<sup>13</sup>
C
<sub>n-alkane</sub>
varied with leaf development and indicated that the majority of wax development occurred during the initial growing season. The patterns in δ
<sup>2</sup>
H
<sub>n-alkane</sub>
were broadly consistent between species and with previous studies; however, each species had a unique final δ
<sup>2</sup>
H
<sub>n-alkane</sub>
value. The δ
<sup>13</sup>
C
<sub>bulk</sub>
for all species demonstrated a characteristic
<sup>13</sup>
C-enrichment during the initial growing season, followed by
<sup>13</sup>
C-depletion, while δ
<sup>13</sup>
C
<sub>n-alkane</sub>
did not exhibit a consistent trend between the species. These δ
<sup>13</sup>
C data suggested a decoupling of the isotopic inputs between n-alkanes and photosynthetic leaf tissue. When coupled with δ
<sup>2</sup>
H
<sub>n-alkane</sub>
, these data suggested that the precursor compounds utilized in initial production of n-alkanes might be variable and possibly indicated that the stored precursors used for initial leaf tissue and wax production originated from different sources. Nonetheless, these data indicated that the isotopic signatures of n-alkanes relate to a mixture of precursors, but only during a distinct period of leaf ontogeny.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Automated" Owner="NLM">
<PMID Version="1">29955986</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>09</Month>
<Day>23</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>09</Month>
<Day>23</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-1939</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>187</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2018</Year>
<Month>08</Month>
</PubDate>
</JournalIssue>
<Title>Oecologia</Title>
<ISOAbbreviation>Oecologia</ISOAbbreviation>
</Journal>
<ArticleTitle>Distinctions in heterotrophic and autotrophic-based metabolism as recorded in the hydrogen and carbon isotope ratios of normal alkanes.</ArticleTitle>
<Pagination>
<MedlinePgn>1053-1075</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00442-018-4189-0</ELocationID>
<Abstract>
<AbstractText>The hydrogen isotope values of n-alkanes (δ
<sup>2</sup>
H
<sub>n-alkane</sub>
) reflect a plant's water source and water relations, while the carbon isotope values (δ
<sup>13</sup>
C
<sub>n-alkane</sub>
) relate to a plant's carbon metabolism and response to environmental conditions. However, the isotopic dynamics of the transition from heterotrophic to autotrophic metabolism during foliar development on δ
<sup>2</sup>
H
<sub>n-alkane</sub>
and δ
<sup>13</sup>
C
<sub>n-alkane</sub>
remain unclear. Here, we monitored δ
<sup>2</sup>
H
<sub>n-alkane</sub>
and δ
<sup>13</sup>
C
<sub>n-alkane</sub>
across a growing season from Betula occidentalis, Populus angustifolia, and Acer negundo. In addition, we compiled δ
<sup>2</sup>
H values of atmospheric vapor, leaf water, xylem water, and stream water as well as δ
<sup>13</sup>
C values of bulk leaf tissue (δ
<sup>13</sup>
C
<sub>bulk</sub>
). We found δ
<sup>2</sup>
H
<sub>n-alkane</sub>
and δ
<sup>13</sup>
C
<sub>n-alkane</sub>
varied with leaf development and indicated that the majority of wax development occurred during the initial growing season. The patterns in δ
<sup>2</sup>
H
<sub>n-alkane</sub>
were broadly consistent between species and with previous studies; however, each species had a unique final δ
<sup>2</sup>
H
<sub>n-alkane</sub>
value. The δ
<sup>13</sup>
C
<sub>bulk</sub>
for all species demonstrated a characteristic
<sup>13</sup>
C-enrichment during the initial growing season, followed by
<sup>13</sup>
C-depletion, while δ
<sup>13</sup>
C
<sub>n-alkane</sub>
did not exhibit a consistent trend between the species. These δ
<sup>13</sup>
C data suggested a decoupling of the isotopic inputs between n-alkanes and photosynthetic leaf tissue. When coupled with δ
<sup>2</sup>
H
<sub>n-alkane</sub>
, these data suggested that the precursor compounds utilized in initial production of n-alkanes might be variable and possibly indicated that the stored precursors used for initial leaf tissue and wax production originated from different sources. Nonetheless, these data indicated that the isotopic signatures of n-alkanes relate to a mixture of precursors, but only during a distinct period of leaf ontogeny.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Tipple</LastName>
<ForeName>Brett J</ForeName>
<Initials>BJ</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT, 84112, USA. brett.tipple@utah.edu.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Global Change and Sustainability Center, University of Utah, 115 South 1460 East, Salt Lake City, UT, 84112, USA. brett.tipple@utah.edu.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ehleringer</LastName>
<ForeName>James R</ForeName>
<Initials>JR</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT, 84112, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Global Change and Sustainability Center, University of Utah, 115 South 1460 East, Salt Lake City, UT, 84112, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>ISO-1052551</GrantID>
<Agency>National Science Foundation (US)</Agency>
<Country>International</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>06</Month>
<Day>28</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Oecologia</MedlineTA>
<NlmUniqueID>0150372</NlmUniqueID>
<ISSNLinking>0029-8549</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000473">Alkanes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002247">Carbon Isotopes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014885">Waxes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>7YNJ3PO35Z</RegistryNumber>
<NameOfSubstance UI="D006859">Hydrogen</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>AR09D82C7G</RegistryNumber>
<NameOfSubstance UI="D003903">Deuterium</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000473" MajorTopicYN="Y">Alkanes</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002247" MajorTopicYN="N">Carbon Isotopes</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003903" MajorTopicYN="N">Deuterium</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006859" MajorTopicYN="Y">Hydrogen</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014885" MajorTopicYN="N">Waxes</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Compound-specific isotope analysis</Keyword>
<Keyword MajorTopicYN="Y">Cuticle</Keyword>
<Keyword MajorTopicYN="Y">Ecophysiology</Keyword>
<Keyword MajorTopicYN="Y">Leaf wax</Keyword>
<Keyword MajorTopicYN="Y">Stable isotope</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>07</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>06</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>6</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>9</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>6</Month>
<Day>30</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29955986</ArticleId>
<ArticleId IdType="doi">10.1007/s00442-018-4189-0</ArticleId>
<ArticleId IdType="pii">10.1007/s00442-018-4189-0</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Front Plant Sci. 2015 Nov 24;6:1008</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26635835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1990 Jun;83(2):247-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22160118</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Isotopes Environ Health Stud. 2000;36(3):303-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11501707</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2010 Apr 23;328(5977):486-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20413498</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2015 May 5;112(18):5607-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25902508</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Glob Chang Biol. 2016 Feb;22(2):889-902</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26391334</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2011 Oct;34(10):1639-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21696403</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1985 May;66(2):211-218</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28311592</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Jan 22;110(4):1167-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23267092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2015 Dec;179(4):981-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26310435</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2003 Jun;63(3):361-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12737985</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2006;171(3):469-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16866954</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2016 Jun 7;113(23):6355-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27274042</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2014;65:667-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24274032</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2016 Dec;39(12):2676-2690</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27566133</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2013 Jan 17;493(7432):389-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23325220</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2001 Jun;128(1):24-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28547086</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2015 Jun;38(6):1035-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25266328</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2016 Nov;39(11):2390-2403</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27392279</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Aug;126(4):1725-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11500570</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Total Environ. 2010 Oct 15;408(22):5244-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20719360</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1999 Dec;121(4):467-477</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28308356</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2004 Feb;65(3):323-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14751303</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2004 May;65(10):1369-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15231410</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2017 Apr 1;37(4):511-522</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27974650</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2004 Jun 25;304(5679):1955-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15155911</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 1997 Dec;84(12):1693</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21708573</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1985 Jun;78(2):427-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16664259</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1967 Jun 9;156(3780):1322-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4975474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1997 Feb;109(3):362-367</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28307532</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Forensic Sci Int. 2016 May;262:233-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27045381</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Rapid Commun Mass Spectrom. 2002;16(10):929-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11968123</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1980 Dec 10;255(23):11435-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7002923</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2009 Jul;32(7):780-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19220785</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1991 Jun;96(2):588-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16668226</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2015 Aug;178(4):981-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25761443</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2018 Apr;218(2):479-491</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29460486</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1986 Nov;70(4):520-526</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28311493</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2010 Mar;71(4):388-403</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20056262</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Appl. 2008 Mar;18(2):421-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18488606</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Jan 22;110(4):1144-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23307813</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Rapid Commun Mass Spectrom. 2006;20(8):1317-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16555369</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2007;173(2):294-305</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17204076</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1990 Jan;180(2):154-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24201939</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Forensic Sci Int. 2017 Jan;270:255-260</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27825725</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Isotopes Environ Health Stud. 2015;51(1):124-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25704898</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Feb 12;110(7):2659-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23359675</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<country name="États-Unis">
<noRegion>
<name sortKey="Tipple, Brett J" sort="Tipple, Brett J" uniqKey="Tipple B" first="Brett J" last="Tipple">Brett J. Tipple</name>
</noRegion>
<name sortKey="Ehleringer, James R" sort="Ehleringer, James R" uniqKey="Ehleringer J" first="James R" last="Ehleringer">James R. Ehleringer</name>
<name sortKey="Ehleringer, James R" sort="Ehleringer, James R" uniqKey="Ehleringer J" first="James R" last="Ehleringer">James R. Ehleringer</name>
<name sortKey="Tipple, Brett J" sort="Tipple, Brett J" uniqKey="Tipple B" first="Brett J" last="Tipple">Brett J. Tipple</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000F55 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000F55 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:29955986
   |texte=   Distinctions in heterotrophic and autotrophic-based metabolism as recorded in the hydrogen and carbon isotope ratios of normal alkanes.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:29955986" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020